Nasal High Flow Therapy: An Evidence-Based Approach

Utah Society for Respiratory Care Conference March 31, 2023

Disclosures

Chris Hutchinson, PGDip, BE Director of Clinical Affairs Fisher & Paykel Healthcare

> Member AARC Affiliate Member ATS & ACEP Associate Member SCCM

Married to Kate with three sons Alex (16 yr), Matthew (14 yr) & Oliver (19 mo) Avid supporter of New Zealand All Blacks Rugby Team An evidence-based approach to the use of Nasal High Flow across adult and pediatric care settings (with ED focus). At completion attendees will be able to:

- Understand the origins and mechanisms of action for Nasal High Flow
- Review **updated** clinical evidence and **new** Clinical Practice Guidelines
- Review treatment algorithms and guidance for adult and pediatric patients
- Evaluate and apply knowledge to patient care and practice change

1 Quick recap: mechanisms of action for NHF

2 How has clinical evidence lead to Clinical Practice Guidelines?

3 Hot topic questions: Pediatrics? Therapy success?

4 Q&A

Who routinely used HFNC before COVID-19?

Can HFNC be used as first-line therapy for patients who present with undifferentiated respiratory distress?

History & background

c. 1920's

1214 DECEMBER 7, 1968

PRELIMINARY COMMUNICATIONS

THE LANCET

tests demonstrated severe delayed hypersensitivity reaction, maximal at 48–72 hours. This response was to the first application after transplant and approximately 3 months after previous tests. It is probable that small amounts of the chemicals remained in the tissues and when thymic function was established, sensitisation occurred. Biopsy of a lymph-node 8 months after implantation of thymic tissue was normal for an infant of this age (fig. 4b). This finding, coupled with normal numbers of circulating lymphocytes, indicated repopulation of peripheral lymphoid tissue with small lymphocytes. After operation

CONTINUOUS CONTROLLED HUMIDIFICATION OF INSPIRED AIR

Summary It has been observed that gases can be administered through the nose at high flow-rates provided that they are at body-temperature and fully saturated with water-vapour. A simple and easily portable system has been devised for delivering gases in this way, and has been shown to be effective in volunteers. It is now proving satisfactory in clinical use, both for continuous humidification and for administration of oxygen.

Department of Anæsthesia, Rigshospitalet, Copenhagen, Denmark

NIELS LOMHOLT M.D. Copenhagen

1214 DECEN	ABER 7, 1968	PRELIMINARY COMMUNICATI	IONS	THE LANCET
1214 DECEN tests demo action, max first applic months aft amounts of thymic fun Biopsy of a thymic tissu This findin	Most of the by the use of more nearly humidification became practice of the block without disc	he problems of humidificat f water-vapour instead of ac y reproduce the physiolog ion in the respiratory trac cticable when <u>the author d</u> own into one nostril at 20-	tion could be solved erosols. This would gical mechanism of ct. Such a method iscovered that gases 30 litres per minute perception, provided	D AIR ases can be ose at high perature and e and easily ing gases in a volunteers.
phoid tissu	that the gas with water-	was at <u>body-temperature</u> a vapour. (The highest tol	and 100% saturated erable flow of dry, itres per minute.)	LOMHOLT

; LOMHOLT Copenhagen

High flow terminology

Mechanisms of action

Reduction of dead space

Dynamic positive airway pressure

Mundel et al. J Appl Physiol. 2013.
 Parke et al. Respir Care. (Aug) 2011.
 Parke et al. Respir Care. (Mar) 2011.

Airway hydration

OPTIMAL HUMIDITY

Prevents desiccation of the airway epithelium¹

Improves mucus clearance^{1,2}

Williams et al. *Crit Care Med.* 1996.
 Hasani et al. *Chron Respir Dis.* 2008.

Airway hydration

100% Humidity

90% Humidity for 15 minutes

© Fisher & Pavkel Healthcare Limited 2009

In vitro model of the effects of **high flows of warm, humidified air** on mucociliary transport

Patient comfort

1. Roca et al. Respir Care. 2010. Maggiore et al. Am J Respir Crit Care Med. 2014.
 Frat et al. N Engl J Med. 2015.

Supplemental oxygen

Supplemental oxygen

Confidence in the delivery of blended humidified oxygen^{1,2}

Adapted from Masclans et al.

Nasal High Flow

Nasal High Flow therapy is the delivery of heated and humidified air (w/ or w/o supplemental oxygen), up to 60 L/min, to a patient using a high flow nasal cannula (HFNC).

1 Quick recap: mechanisms of action for NHF

2 How has clinical evidence lead to Clinical Practice Guidelines?

3 Hot topic questions: Pediatrics? Therapy success?

4 Q&A

Can the early use of NHF reduce the rate of intubation?

Frat et al. 2015 NEJM FLORALI Study

STUDY

A 23-center study compared nasal high flow (NHF) therapy to use of a non-rebreather mask and NIV as a primary treatment (pre-intubation).

METHOD

- 310 patients in acute hypoxemic respiratory failure (PaO₂:FiO₂ ≤ 300 mmHg) were randomized to receive NHF, non-rebreather mask or NIV.
- Primary outcome: number of patients intubated at day 28
 not attained.

RESULTS

- NHF significantly reduced ICU mortality: NHF 11%, standard O₂ therapy 19%, NIV 25% and 90-day mortality: NHF 12%, standard O₂ therapy 23%, NIV 28%
- NHF significantly reduced need for intubation in more acute patients (PaO₂:FiO₂ ≤ 200 mmHg)
- Significant increase in ventilator-free days on NHF
- NHF significantly reduced intensity of respiratory discomfort and dyspnea

Frat et al. N Engl J Med. 2015.

Can NHF support acute undifferentiated SOB ED patients?

Bell et al. 2015 Emerg Med Australas

REDUCED respiratory rate

IMPROVED patient comfort

STUDY

A comparison of NHF with conventional oxygen therapy (COT) in patients with acute undifferentiated shortness of breath in the ED

METHOD

- Randomized controlled trial
 in two Australian EDs
- 100 patients with undifferentiated shortness of breath
- NHF flow rate was commenced at 50 L/min with FiO₂ at 30%
- Primary outcomes: The need to escalate ventilation therapy or a reduction in respiratory rate of 20% or more within 2 hours

RESULTS

Significantly reduced escalation in ventilatory support using NHF

4.2% (NHF) vs. 19% (COT), p = 0.02

- Higher proportion of patients had > 20% reduction in respiratory rate using NHF 66.7% (NHF) vs. 38.5% (COT), p = 0.005
- More patients demonstrated a reduction in dyspnea Modified Borg score: 75% (NHF) vs. 55.8% (COT), p = 0.044
- Significant increase in patient comfort with NHF
 Numerical scale out of 5 (very comfortable): 4 (NHF) vs. 3 (COT), p = 0.035

Bell. EMA. 2015.

Literature review of AHRF studies

Ischaki et al. 2017

Ischaki. Eur Respir Rev. 2017.

Wide body of evidence supporting Nasal High Flow

A recent systematic search of the PubMed database found 52 acute adult NHF controlled studies.

 85% reported flow rates above 45 L/min

AARC: American Association for Respiratory Care. ACP: American College of Physicians. SSC: Surviving Sepsis Campaign; ARDS: Acute respiratory distress syndrome; AHRF: Acute hypoxemic respiratory failure. 1. Sepsis-induced hypoxemic respiratory failure; 2. Continuous use of NHF; 3. Following extubation for patients intubated >24hrs and have any high-risk feature; 4. Non-surgical patients; 5. Immediately post-extubation to avoid re-intubation; 6. For post-extubation acute hypoxemic respiratory failure.

AARC CLINICAL PRACTICE GUIDELINES

Piraino T, et al. Respiratory Care. 2021.

Can NHF support hypercapnic patients in the ED?

Jeong et al. 2015 AJEM

REDUCED respiratory rate

STUDY

A retrospective analysis of arterial blood gases (ABG) of patients treated with NHF with respiratory failure, with and without hypercapnia in the ED

METHOD

- 81 (46 hypercaphic) patients with acute respiratory failure
- NHF flow rate and FiO₂ determined at physician's discretion
- Primary outcome: change in Arterial Blood Gas (ABG)

RESULTS

Significant reduction in PaCO₂ in the hypercapnic group

73.2 mmHg ± 20.0 to 67.2 mmHg ± 23.4, p = 0.02

- Significant increase in PaO₂ and SpO₂ for hypercaphic and nonhypercaphic patients overall 64.7 mmHg ± 33.3 to 80.0 mmHg ± 31.4, p < 0.01 overall 83.5% ± 14.4 to 92.0% ± 7.3, p < 0.01</p>
- Significant reduction in respiratory rate for patients with hypercapnia
 24.7 breaths per minute ± 5.8 to 23.6 ± 5.2, p = 0.03

Jeong. AJEM. 2015.

Graphic courtesy of Dr Nicholas Hill and Wendolyn Hill (Certified Medical Illustrator)

Cortegiani et al. 2020

Critical Care

High flow nasal therapy versus noninvasive ventilation as initial ventilatory strategy in COPD exacerbation: a multicenter non-inferiority randomized trial.

Design

9 centered RCT

Patients

n = 79

Mild-to-moderate AECOPD (pH 7.25-7.35, $PaCO_2 \ge 55 \text{ mmHg before ventilator support}$

Intervention	Control		
NHF	NIV		

Outcome

Primary: PaCO₂ from baseline to 2 h (non-inferiority margin 10 mmHg)

Secondary: non-inferiority of NHF to NIV in reducing PaCO₂ at 6 h rate of treatment changes, dyspnea, discomfort, RR, ABG, hospital LoS, mortality

Results

Mean PaCO₂ reduction from baseline at 2 hours

VS

NHF

- NHF was non-inferior to NIV in reduction of $PaCO_{2}$ (p = 0.0003).
- Both treatments had a significant effect on PaCO₂ reductions over time, and trends were similar between groups.
- 32% of NHF patients required NIV by 6 h.

NIV

Pantazopoulos et al. 2020 COPD: Journal of Chronic Obstructive Pulmonary Disease

Nasal high flow use in COPD patients with hypercapnic respiratory failure: treatment algorithm & literature review

Design

Literature review

Aim

Discuss suitability of NHF therapy for COPD patients who cannot tolerate NIV and propose a therapy algorithm for patients with AECOPD based on current literature.

Search result

AECOPD (9 studies)

Conclusions

NHF may be used in place of NIV in least tolerate and compliant patients, or in association with NIV to reduce mask-related side effects.

Takeaway

NHF recommended as initial ventilatory support for patients with:

- pH between 7.25 7.35
- $PaCO_2 \ge 45 \text{ mmHg}$
- Escalate to NIV for pH < 7.25

1 Quick recap: mechanisms of action for NHF

2 How has clinical evidence lead to Clinical Practice Guidelines?

3 Hot topic questions: Pediatrics? Therapy success?

4 Q&A

Question 1: How can we utilize NHF with pediatric patients?

Question 2: How can we determine NHF therapy success or failure?

Q1: NHF with pediatrics?

Landmark Study: The PARIS Trial

The largest NHF RCT was conducted by Franklin et al.¹ This multi-center RCT supports the use of NHF in the ED and general care areas in young infants with bronchiolitis

The primary outcome of the study was that the use of NHF at 2 L/kg/min as a primary treatment in the ED and general care areas resulted in a significantly lower rate of therapy failure compared with standard oxygen therapy (12 vs. 23%, p < 0.001). Therapy failure was defined as an escalation of therapy or PICU admission.

Q1: NHF with pediatrics?

Franklin 2018, N Engl J Med¹

- → Patients receiving NHF at 2 L/kg/min are half as likely to fail vs. standard $O_2 < 2$ L/min.
- \rightarrow All patients who failed standard O_2 received rescue NHF.
 - ightarrow 61% of them responded to NHF and avoided PICU.

Note: Standard O₂ = 100% O₂ NHF at 2 L/kg/min = Total flow/kg/min; FiO₂ titrated

Those who received NHF had significantly lower rates of escalation of care due to therapy failure than those receiving standard O_2 (p < 0.001).¹

Optimizing NHF in the ED

Introducing NHF in the ED

Q1: NHF with pediatrics?

Note: Standard O_2 = 100% O_2 NHF at 2 L/kg/min = Total flow/kg/min; FiO₂ titrated

ightarrow US\$661 savings per bronchiolitis patient by avoiding PICU.

ightarrow Cost neutral.

Note: Cost analysis of the Franklin study.4

Q1: NHF with pediatrics?

Landmark Study: The FIRST-ABC Trial

First-line Support for Assistance in Breathing in Children (FIRST-ABC) was designed as a master protocol of two pragmatic noninferiority RCTs by Ramnarayan et al.¹³ These RCTs investigated the safety and efficacy of NHF and CPAP when used as:

 \rightarrow Post-extubation support in critically ill children (Step down)

→ First-line support in acutely ill children (Step up)

Treatment Algorithm. A standardized treatment protocol was used to ensure the consistency of treatment across the multiple centers involved in the study.

 \rightarrow

CPAP (7 – 8 cm H_2 O) or NHF starting at 2 L/kg/min Weaning therapy Stopping therapy

 \rightarrow

Success: ≥ 48 hours free from respiratory support

Primary Outcome: Time to liberation from respiratory support

Reduced length of stay and sedation

Q1: NHF with pediatrics?

Ramnarayan 2022 JAMA¹

NHF as primary treatment was non-inferior to CPAP for time on respiratory support.

Therapy failure was less likely in the NHF group compared with the CPAP group.

Predominantly due to discomfort

2 Of the secondary outcomes, the NHF group had significantly: Step up 9.3% Lower use of sedation NHF 27.7% vs. CPAP 37.0% Less days in PICU 7.6 Less days in hospital Fewer occurrences of nasal trauma NHF 2.0% vs. CPAP 6.5%

Recent evidence supports flow of ≥ 2 L/kg/min for infants up to 12 kg.¹⁻⁵ Flow rates for those over 12 kg have been protocolized by the PARIS 1 and 2 research group.⁵

Weight	Flow Rate					
Up to 12 kg	2 L/kg/min					
13-15 kg	30 L/min					
16-30 kg	35 L/min					
31-50 kg	40 L/min					
>50 kg	50 L/min					

* Systematic research of the available literature conducted on July 21 2021 using predefined search terms, with data extraction and screening performed via DistillerSR (Evidence Based Partners, Ottawa, Ontario) by internal clinical researchers. An F&P Optiflow system is defined as a flow source (either independent or integrated) with an F&P humidifier and an F&P Optiflow interface.

Brink et al. Pediatr Crit Care Med 14, 326–331 (2013). 2. Milési et al. Intensive Care Med 39, 1088–1094 (2013).
 Pham et al. Pediatr Pulmonol 50, 713–720 (2014) 4. Schlapbach et al. Intensive Care Med 40, 592–599 (2014).
 Franklin et al. BMJ Open. 9, e030516. (2019). 6. Franklin et.al. N Engl J Med 378, 1121–1131 (2018)

Q2: Determining NHF therapy success

Sztrymf et al, 2011

associates nasal high flow (NHF) with sustained beneficial effects on oxygenation and clinical parameters in patients with acute respiratory failure¹

Respiratory rate reduction appears to be a predictor of therapy success¹

Oxygenation 10 minutes² - 15 minutes³ Respiratory

Oxygenation

ular

domina/ annual

Dyspnea 5 minutes⁴ - 30 minutes¹

Supraclavicular retraction 30 minutes¹

Thoracoabdominal asynchrony 30 minutes¹

1. Sztrymf et al. Intensive Care Med. 2011. 2. Rittavamai et al. Respir Care, 2014. 3. Lenglet et al. Respir Care, 2015. 4. Rittayamai et al. Respir Care, 2015.

Q2: Determining NHF therapy success

- Roca & colleagues conducted derivation (2016) and validation (2019) studies of an index to predict the success of HFNC in pneumonia patients with AHRF
- First look at the ROX index: defined by three common noninvasive measurements:

 $\frac{\text{SpO}_2 / \text{FiO}_2}{\text{RR}} = \text{ROX index}$

 Oxygen saturation measured by SpO₂ / FiO₂ had a greater weight than RR

$$\frac{\text{SpO}_{2}/\text{FiO}_{2}}{\text{Respiratory rate}} = \text{ROX index}$$

$$\frac{\text{Healthy' example}}{15} = 30.2 \qquad \frac{95/0.85}{37} = 3.0$$

"The authors confirmed that a ROX value of ≥ 4.88 predicted the success of NHF"

Q2: Determining NHF therapy success

When an adult respiratory compromised patient presents ...

If hypoxemic:

Low levels of blood oxygen

• SpO₂ < 92%, ABG: PaO₂ < 75mm Hg

Frat. NEJM. 2015.

- 23 ctr RCT, 310 pts AHRF, NHF vs COT vs NIV
- NHF reduced mortality and need for intubation

Bell. Emerg Med Aust. 2015.

- 2 ctr RCT, 100 ED pts with acute undifferentiated shortness of breath, NHF vs COT
- NHF reduced escalation in ventilatory support

Ischaki. Eur Resp Rev. 2017.

• Literature review (99 papers) and treatment algorithm

Clinical Practice Guidelines

- ESICM, 2020 recommend HFNC over COT
- AARC, 2021 recommend HFNC over COT
- ACP, 2021 use HFNC over NIV
- SCCM, 2021 suggest HFNC over NIV

If hypercapnic:

High partial pressure of blood carbon dioxide

• $PaCO_2 > 45 \text{ mmHg}, \text{ pH} < 7.35$

Jeong. Am J Emerg Med. 2015.

- Retrospective ABG analysis of 81 ED pts with ARF
- Reduced PaCO₂ and RR in hypercapnic group
- Increased PaO₂ and SpO₂ for hypercapnic and nonhypercapnic groups

Cortegiani. Crit Care. 2020.

- 9 ctr RCT, 79 pts AECOPD, NHF vs NIV
- NHF non-inferior to NIV as initial ventilatory support
- 32% of pts receiving NHF required NIV by 6h

Guidance

- Pantazopoulos. COPD. 2020.
 Literature review (9 RCTs) and treatment algorithm NHF recommended for patients with
 - pH between 7.25 7.35
 - escalate to NIV for pH < 7.25

Can HFNC be used as first-line therapy for patients who present with undifferentiated respiratory distress? 1 Quick recap: mechanisms of action for NHF

2 How has clinical evidence lead to Clinical Practice Guidelines?

3 Hot topic questions: Pediatrics? Therapy success?

4 Q&A

Thank you from Fisher & Paykel Healthcare Open for any questions

Chris Hutchinson, Director of Clinical Affairs

- \bowtie
 - chris.hutchinson@fphcare.com

@CPHutch

Reduction of dead space: Moller

Adapted from Möller et al. J Appl Physiol. 2015.

Reduction of dead space: Moller

What changes are seen in patients using NHF?

NHF increases airway pressure, end-expiratory lung volume and tidal volume.¹

ESICM CLINICAL PRACTICE GUIDELINES

Rochwerg B, et al. Intensive Care Medicine. 2020.

ERS CLINICAL PRACTICE GUIDELINES

Oczkowski S, et al. European Respiratory Journal. 2021.

The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. *Rochwerg B, et al. 2020*

"We **recommend** using HFNC compared to COT for patients with acute hypoxemic respiratory failure."

Appropriate use of high flow nasal oxygen in hospitalized patients for initial or postextubation management of acute respiratory failure: A clinical guideline. *Qaseem A, et al 2021*

"Use high-flow nasal oxygen rather than noninvasive ventilation in hospitalized adults for the management of acute hypoxemic respiratory failure." Society of Critical Care Medicine

Surviving Sepsis Campaign, 2021: international guidelines for management of sepsis and septic shock *Evans L, et al. 2021*

"For adults with sepsis-induced hypoxemic respiratory failure, we **suggest** the use of high flow nasal oxygen over noninvasive ventilation." Apply therapy early for stabilization and benefit the patient throughout their stay

Optimal humidity

Multi-disciplinary implementation

Jackson et al. 2021

Respiratory Care

Implementation of high-flow nasal cannula therapy outside the intensive care setting.

Design

Single center cohort observational study (pre and post NHF implementation)

Patients

n = 346 Initiation or discontinuation of therapy outside the ICU

Intervention

18-month after implementing NHF therapy

Control

Prior to NHF implementation

Outcome

Share education and implementation process. Report patient outcomes

What flow rates should be used for AHRF patients?

					Key:		Flow	range	٠	Startin	g flow	• M	1ean flow
							F	low l	./mi	n			
Guid	ance source	Category description	10	15	20	25	30	35	40	45	50	55	60
	Hernández et al Oct 2016	extubated patients at high risk of reintubation ¹									•		
	Hernández et al Apr 2016	extubated patients at low risk of reintubation ²					•	*					
ESS	Bell et al 2015	acute undifferentiated shortness of breath in the ED ³									•		
ISTR	Frat et al 2015	acute hypoxemic respiratory failure (pre-intubation) ⁴									0		
SY D	Stéphan et al 2015	hypoxemic patients post cardiothoracic surgery ⁵									•		
ATOF	Maggiore et al 2014	post extubation with acute respiratory failure ⁶									•		
SPIR/	Peters et al 2012	do not intubate patient with hypoxemic respiratory distress ⁷							(0			
RES	Sztrymf et al 2011	acute respiratory failure ⁸									0		
	Parke et al 2011	mild-to-moderate hypoxemic respiratory failure ⁹						•					
	Corley et al 2011	post-cardiac surgery ¹⁰						•					
NIC	Cirio et al 2016	stable severe COPD patients ¹¹											0
IROI	Rea et al 2010	COPD, bronchiectasis ¹²											
Ċ	Hasani et al 2008	bronchiectasis ¹³											

* at 12 hours post extubation

How much pressure is generated?

Parke et al. Respir Care. (Aug) 2011.
 Groves et al. Aust Crit Care. 2007.
 Ritchie et al. Anaesth Intensive Care. 2011.

900PT563 Airvo Tube & Chamber Kit w/ Nebulizer Adaptor

What are the delivered & respirable dose?

Albuterol sulfate (1 mg/mL, 2.5 mL)	10 L/min	20 L/min	30 L/min		
Delivered dose (µg)*	1,362.9 – 2,087.7	548.6 – 1,938.0	383.3 – 1,461.80		
Delivered %	55 – 84	22 – 78	15 – 58		
Respirable dose (µg, 1-5 µm)*	1,035.9 – 1,550.3	470.7 – 1,428.2	387.9 – 837.3		
Respirable %	41 – 62	19 – 57	16 – 33		

Testing completed with one Aerogen Solo nebulizer, three sets of Airvo 2, 900PT563 Airvo Tube & Chamber Kit with Nebulizer Adapter, OPT970 tracheostomy interface and three tests per set. * 95% confidence intervals

What is the inhaled dose using Airvo and Aerogen Solo?

Firstly, a quick reminder that the FDA does not approve the nasal delivery of aerosolized drugs or medications for lung deposition.

Alolaiwat (2021) demonstrated that the inhaled dose of albuterol was higher with vibrating mesh nebulizer (VMN) via Airvo 2 than Vapotherm Precision Flow at flows of 20 L/min (~10 times higher with Airvo 2) and 40 L/min (~6 times higher with Airvo 2).

<u>Assessment of Aerosol Delivery and Fugitive Aerosol Particle Concentrations During Aerosol</u> <u>Delivery via Two High Flow Devices: A RCT in Healthy Volunteers</u>

Alolaiwat A, Harnois L, Li J, Fink JB. Rush University. Poster 2021

- Two HFNC devices (Airvo 2 and Vapotherm Precision Flow) were utilized with vibrating mesh nebulizer at inlet of the humidifier
- Aerosol particle concentrations were compared between the two devices in random order of setup
- Two aerosol particle sizers measured the fugitive aerosol concentrations at sizes of 0.3 to 10 µm at baseline, before, during and after each experiment
- In-vitro study conducted to evaluate inhaled dose with albuterol at three flow settings (20, 40, 60 L/min for Airvo 2 and 20, 30, 40 L/min for Vapotherm).

What is the inhaled dose using Airvo and Aerogen Solo?

Flow L/min	Inhaled	n			
110 vv, L/11111	Vapotherm	Airvo2	۲ 		
20	$\textbf{1.3} \pm \textbf{0.1}$	$\textbf{12.9} \pm \textbf{0.9}$	0.05		
40	$\textbf{0.8}\pm\textbf{0.1}$	5.0 ± 0.2	0.05		
60	NA	$\textbf{3.4}\pm\textbf{0.1}$	NA		

Table1. Inhaled dose of VMN via Vapotherm and Airvo2 at different flow settings.

① RUSH UNIVERSITY

Assessment of Aerosol Delivery and Fugitive Aerosol Particle Concentrations Generated During Aerosol Delivery via Two High Flow Devices; A Randomized Crossover Study in Healthy Volunteers

Amnah Alolaiwat¹; Lauren Harnois¹; Jie Li ¹ James B Fink^{1,2}

1 Department of Respiratory Care, College of Health Science, Rush University, Chicago, IL, USA; 2 Aerogen Pharma Corp, San Mateo, CA, USA

Introduction

- Aerosol delivery via high-flow nasal cannula (HFNC) has attracted clinical interests in recent years.
- Both HFNC and aerosol therapy have been considered as aerosol generating procedure (AGP) during COVID-19 pandemic.
- Little is known about the fugitive aerosol concentrations during trans-nasal aerosol delivery and the effective method to reduce the fugitive aerosol concentrations.

figure1. Experiment set up

Methods

- Two HFNC devices (Airvo2 and Vapotherm) were utilized with a vibrating mesh nebulizer (VMN) placed at the inlet of humidifier.
- Aerosol particle concentrations were compared between the two devices, in a random order of:
 - HFNC alone, HFNC with a surgical mask over nasal cannula, HFNC with a scavenger face tent, HFNC with VMN, HFNC with VMN and a surgical mask, and HFNC with VMN and a scavenger face tent.

 Conflict or interest: Dr. Li declares to receive research funding from Fisher & Paykel Healthcare Ltd, Aerogen Ltd, and Rice Foundation, lecture honorarium from AARC and Fisher & Paykel Healthcare Ltd. Ako, Dr. Fink is Chief Science Officer for Aerogen Pharma Corp. Other authors have no conflict or interests.

Disclosure

Research Funding: Study was funded byFisher & Paykel Healthcare Ltd, Aerogen Ltd, and Rice Foundation

- Two aerosol particle sizers placed at 1 and 3 feet away from subjects to measure the fugitive aerosol concentrations at sizes of 0.3 to 10 µm at baseline, before, during and after each experiment
- small in-vitro study was conducted to evaluate inhaled dose with albuterol (2.5mg in 3mL) delivered using VMN via the two HFNC devices, three flow settings (20L, 40L, 60L for Airvo2 and 20L, 30L, 40L for Vapotherm) were used. Figure 1.

Result

- Compared to HFNC alone, nebulization via VMN with Vapotherm device did not generate higher fugitive aerosol concentrations (p>0.05 for all particle sizes). Figure 2.
- Nebulization via VMN with Airvo2 device generated higher fugitive aerosol concentrations at sizes 0.3 to 1.0 μm
- Placing a surgical mask over HFNC or using a scavenger face tent were similar effective in reducing the fugitive aerosol concentrations

Figure 2. Fugitive aerosol concentrations with Airvo2 vs Vapotherm.

> In the in-vitro study :

• The inhaled dose of albuterol was higher with VMN via Airvo2 than Vapotherm with HFNC flow of 20 L/min [12.9 \pm .9]% vs [1.3 \pm .1]%, p=.05) and 40 L/min ([5.0 \pm .2]% vs [.8 \pm .1]%, p=.05)].

Flow I /min	Inhaled	n		
	Vapotherm	Airvo2	P	
20	1.3 ± 0.1	12.9 ± 0.9	0.05	
40	0.8 ± 0.1	5.0 ± 0.2	0.05	
60	NA	3.4 ± 0.1	NA	

Table1. Inhaled dose of VMN via Vapotherm and Airvo2 at different flow settings.

Conclusion

- Airvo2 generated higher inhaled dose and fugitive aerosol particle concentrations than Vapotherm
- Placing a surgical mask or a scavenger face tent could reduce fugitive aerosol concentrations.

References

- Li J. Narrative review of practical aspects of aerosol delivery via high-flow nasal cannula. Ann Transl Med. 2021 Apr;9(7):390.
- U J. The Ratio of Nasal Cannula Gas Flow to Patient Inspiratory Flow on Trans-nasal Pulmonary Aerosol Delivery for Adults: An in Vitro Study. Pharmaceutics. 2019 May 10:11[5]:223.
- Dhand R,. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Amarican

Journal of Respiratory and Critical Care Medicine, 202(3)

- Ari A. Aerosol Drug Delivery Through High Flow Nasal Cannula. Curr Pharm Biotechnol. 2017;18(11):877-882.
- Bem RA. Risk of Aerosol Formation During High-Flow Nasal Cannula Treatment in Critically III Subjects. Respir Care. 2021 Jun;66(6):891-896.

CRUSH Rush is a not-fin-prolitional thread on and research entreprise comprising Rush University, Medical Center, Rush University, Rush Calc Rash Hospital and Rush Health.